
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 23, 121 1-1222 (1996) 

TWO-DIMENSIONAL SOLUTIONS OF MHD EQUATIONS WITH 
AN ADAPTED ROE METHOD 

NECDET ASLAN 
Physics Department, Marmara Universi@, Fen-Edeb.. Goztepe Istanbul, Turkey 

SUMMARY 

In this paper a higher-order Godunov method for two-dimensional solutions of the ideal MHD 
(magnetohydrodynamic) equations is presented. The method utilizes the finite volume approach with 
quadrilateral cells. In Section 2 the MHD equations (including flux and source terms) in conservative form 
are given. The momentum flux is rearranged such that while a source vector is produced, the eigenstructure of the 
Jacobian matrix does not change. This rearrangement allows a full Roe averaging of the density, velocity and 
pressure for any value of adiabatic index (contrary to Brio and Wu’s conclusion (J. Comput. Phys., 75, 400 
(1 988)). Full Roe averaging for the magnetic field is possible only when the normal gradient of the magnetic field 
is negligible; otherwise an arithmetic averaging can be used. This new procedure to get Roe-averaged MHD 
fields at the interfaces between left and right states has been presented by Aslan (Ph.D. Thesis, University of 
Michigan, 1993; Znf.j. numer. rnetkorkrfluids, 22,569-580 (1996)). This section also includes the shock structure 
and an eigensystem for MHD problems. The eigenvalues, right eigenvectors and wave strengths for MHD are 
given in detail to provide the reader with a full description. The second-order, limited finite volume approach 
which utilizes quadrilateral cells is given in full detail in Section 3. Section 4 gives one- and two-dimensional 
numerical results obtained from this method. Finally, conclusions are given in Section 5 .  
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1. INTRODUCTION 

For solving the Euler and NavierStokes equations, conservative numerical schemes based on higher- 
order Godunov methods which can resolve shocks and discontinuities have been extensively used. 
Some examples of the solution of these equations by such schemes are found in References 1-3. The 
main idea of these methods is to obtain (at the interfaces between mesh points) a numerical flux that 
includes dissipation such that the Rankine-Hugoniot (R-H) conditions are satisfied. Most of these 
schemes suffer from sonic points at which not only one of the characteristic speeds vanishes but also 
the dissipation tends to zero. Some examples of fixing the sonic points are given in References 4-6. 

The first numerical results of solving the one-dimensional ideal h4HD equations with Roe’s 
method (with Harten’s fix of the sonic points) were published by Brio and W U . ~  In their work they 
showed that compound waves (a slow shock and an attached rarefaction wave) can exist in MHD. 
Using the structure coefficients to detect and fix the sonic points, Zachary and Colella’ applied a 
method originally developed by Bell, Colella and Trangen~tein~) to the one-dimensional ideal MHD 
equations and obtained results that were in good agreement with those reported by Brio and Wu. In 
this paper a finite volume approach with quadrilateral cells based on Roe’s method is used for solving 
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the ideal MHD equations numerically in one and two dimensions. A new Roe averaging which 
guarantees that the Rankine- -Hugoniot conditions are satisfied at the interfaces between mesh points 
and a new sonic fix which eliminates the unphysical expansion shocks at the rarefaction fans are 
presented. The results show that the method is efficient and produces excellent results in one and two 
dimensions. 
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2. BASIC EQUATIONS AND THEIR PROPERTIES 

The two-dimensional (a/az = 0) ideal MHD equations in conservative form are given by 

where 2 is the state vector, ?(;) and g(2) are the flux vectors in directions x and y respectively and 
z(2) is the momentum source vector which includes the gradients of the normal component of the 
magnetic field in both directions. These equations can be given in detail by 

a 
ax +- 

where B L  = B; + BZ, VfY = V,” + V,”, p is the density, 
the total energy density, 

is the velocity, is the magnetic field, E is 

B2 P E = I  V2+-+-, 
2 p  871 y - 1  (3) 

and y is the adiabatic index. 
In the finite volume formulation the state is advanced in space and time by evaluating the fluxes at 

the interfaces between neighbouring states. In order for the R-H conditions to be satisfied at these 
interfaces, the fluxes must include some kind of dissipation and for second-order accuracy a flux 
limiter must be introduced to minimize the Lax-Wgndroff-type post-shock oscillations. For 
evaluating the fluxes, a spatially averaged primitive state 2 = [ i j ,  ?,, Fy, Fz, B,, By, Bz, FIT is required 
at these interfaces (MHD version of Roe averaging). Brio and Wu7 concluded that such an averaging 
for the MHD equations does not exist unless y = 2. Notice that the momentum fluxes given above do 
not include the normal magnetic field gradients, thus differing from those given in Reference 7. 
Treating the normal field gradients as sources does not alter the eigensystem of the flux Jacobians (i.e. 
A ,  = af/& and A, = ag/&) but makes Roe averaging available for any value of y, for the Euler 
variables (density, velocity and pressure) and for the magnetic field provided that the normal gradient 
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of the magnetic field vanishes. If the normal gradient does not vanish, this averaging will not exist for 
the magnetic field, in which case an arithmetic averaging can be used. The averaged quantities will be 
given towards the end of this section. 

Equation (1) describes the propagation of the possible waves and discontinuities in space-time. 
The implification of this equation can be best understood when it is examined on a surface of the 
wave front. To do this, denote xo = t, x1 = x, x2 =y and write equation (1) as 9 

where A. is the unit matrix and A l  and A2 are the Jacobian matrices. 
It is known that equation (4) can be transformed into the characteristic equation in a new co- 

ordinate system to, tl, t2 referring to the wave front given by Q(xo, xl, x2) across which the normal 
derivative of li is indeterminate. This co-ordinate system is chosen such that [ I ,  t2 denote a point P on 
this surface and to=@. Using 

equation (4) in this new co-ordinate system turns into 

where the subscripts denote the derivative of the quantities with respect to them. Now extracting the 
derivative of a normal to the surface (i.e. = &), one gets 

0 Equation (7) can be solved for the derivative of 2 normal to Q provided that the matrix c,'=, Ajtx j ,  
has an inverse and is singular (the singularity of this matrix leads to the eigenstructure by setting the 
characteristic determinant to zero). Writing this equation at P+ and P- (the points on either side of P) 
and talung their difference, one gets 

(note that the second and third terms in equation (7) vanish during this operation since they do not 
include the normal derivative and are continuous). Using xo = t, this equation becomes in matrix form 

where 6; = [&/a@]. Equation (9) implies that for &/adz # 0 the wave front given by Q = const. 
propagates in the x - t  space with the speed satisfying 
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Normalizing equation (9) by 6D and taking ?@/$@I = 2 as the surface unit normal vector and 
-(acD/at)/IV@l = A as the propagation velocity of this surface, one gets 

- - 
(A 2 - n7)Sii = 0, (1 1) 

(2, - Ak@i i  = 0 

which turns into 
- - 

(12) 
- 

for a selected &. However, it is known that the kth right eigenvector (rk)  of the matrix 2, is found 
from 

- - 
(2, - A k j ) r k  = 0. (13) 

Comparing equations (12) and (13), one can see that the normal jump in the state can be given by the 
components of the right eigenvectors. This is basically nothing but decomposing the gradient of Ei 
into k simple wave contributions as (provided that A; = GR - iL denotes the normal jump across the 
wave front and that the quantities with a ‘tilde’ represent specially averaged quantities evaluated on 
the wave front) 

where the coefficient ak is said to be the strcngth of the kth wave. Of course, it is straightforward to 
show that when ii has a jump, the jump in f across the wave front (here the interface) becomes 

To determine the special averaging, at the interfaces, equations (14) and (1 5 )  are written in detail 
and solved for the primitive state (see Reference 10 for details). The averages for the density, velocity 
and pressure are given as 

3 = m 9  

Note that these are the averages that would be obtained if Euler’s equations were examined and they 
remain the same for any value of y for the MHD problems provided that the momentum fluxes are 
modified as mentioned above. When the normal gradient of the magnetic field is negligible, the 
special averaging for the perpendicular magnetic field becomes” 

- PLBR+PRBL B =  
PR + P L  

and holds for any value of y; otherwise an arithmetic averaging can be used. In this case, as remarked 
in Reference 7, the stationary solutions will no longer be the steady solutions of the scheme, but the 
discontinuities will still be resolved with a few grid points. Determining the eigensystem (the 
eigenvalues, right eigenvectors and wave strengths related to the left eigenvectors) analytically can 
easily be performed by taking advantage of a symbolic computation package (such as Maple, 
Macysma or Mathematica). It is important to note here that this determination of the eigensystem is 
not unique, since each of them will produce (theoretically) identical results. The difference between 
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them would include different control parameters to fix the degeneration points, different normalizing 
parameters, etc. This issue is still being investigated. In the following subsections an eigensystem of 
the ideal MHD equations is given in detail. It should be noted that the eigensystem given below is 
similar to those given in References 7 and 8. It is noted that the following eigensystem of the normal 
Jacobian is given as a function of the normal (subscript n) and tangential (subscript t) fields. To obtain 
the eigensystem for the x-direction, just replace the subscripts n and t by x and y respectively. For the 
y-direction the second and third and the fifth and sixth elements of the magnetoacoustic and Alfven 
eigenvectors should be interchanged and n and t should be taken as y and x respectively. 

2. I .  Eigenvalues 

The eigenvalues of the normal Jacobian matrix 2, (the speeds of the waves propagating in the 
normal direction) are given as 

0, V,, F,, *if, f, *;A, Vfl f G S ,  (20) 

with 

(21) if,, = J{ z [a  1 +2 It ,/(a*4 - 4Z2iii)]), 

iiA = J(ii/4nS), (22) 

where a*2 = ii2 + B2/4@ and if, UA and 6, are magnetoacoustic fast, Alfven and magnetoacoustic 
slow speeds respectively. 

2.2. Right eigenvectors 

The right eigenvectors of A,, are given as 

entropy eigenvector 

re = [ p ,  JF,, pVt,fiVZ,o, o,o,$pV21T, 

Alfven eigenvectors 

P t v ,  - P Z C  
4n 

O , O , ~ - - , f - , O , -  P z  P t  P z  -~ P f  ,f 
4n 471 J(4nJ)’ J(4n5) 

slow eigenvectors 

fast eigenvectors 
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sgn(&) is the sign of B,,, plus and minus signs refer to foward- and backward-propagating waves 
resptctiyely, subscripts n and t denote normal and perpendicular directions respectively (n = y ,  t = n) 
and P,, B, and & Crf are the normalizing parameters given by 

Here Bt and j Z  represent respectively the cosine and sine of the rotation angle of the perpendicular 
magnetic field BI around the normal direction and &, and Gf are measures of how-closcly the fast 
wave behaves as sound and Alfven waves respectively. For a proper normalization fit = BZ = 1/J2 
for 2: + hi = 0 and 12, = Gf = 1/J2 when iif = iii can be taken. 

2.3. Wave strengths 

The wave strengths are given as 

entropy wave strength 

Alfven wave strength 

slow, fast wave strength differences 

slow, fast wave strength sums 

Determining the eigenvalues, eigenvectors and wave strengths at the interfaces between mesh 
points allows one to construct the flux through the interface. In the following section (using a 
quadrilateral cell structure) the numerical procedure to obtain this flux and hence to advance the state 
vector in time and space is described. 
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3. NUMERICAL PROCEDURE 

Assume that the region of interest R in which equation (1) is to be solved is covered with a grid of 
quadrilateral cells as shown in Figure 1. 

Denoting H; as the quantity H at time t" = nAt and location xi = xo + iAx, yj =yo + jAy, the 
integral form of equation (1) for the region R with a boundary 6 0  can be written as 

a 
udxdy + @dy - i d x )  = J 1 Zdxdy. dS+ J,, a (37) 

To solve this equation, the physical domain is partitioned with quadrilateral cells and equation (37) is 
applied to each cell, yielding the form 

where AiJ defines the area of the cell, CiJ now represents the local cell average of the state, giJ 
denotes the net numerical flux out of the cell and SjJ represents the source vector arising from the 
gradients of the normal magnetic fields. Assuming Ax and Ay as the changes in x and y along the kth 
face of the cell (defined so that the integral is carried out in a counter-clockwise sense as shown in 
Figure l), the net flux can be given by 

where k represents the index for the sides. In this case the state vector is advanced according to 

In the finite volume formulation the flow variables are assumed to be constant in each cell and the 
fluxes are calculated from these variables evaluated at the cell interfaces by a special averaging such 
that the R-H conditions are satisfied. If a monotonic second-order-accurate solution is sought, this 
procedure should include limiters to suppress Lax-Wendroff-type post-shock oscillations. 

Consider the quadrilateral cell i, j shown in Figure 1. The normal and tangential velocity and 
magnetic fields at the kth interface are given by 

V: = V, cos @k + vY sin (Dk, 

B: =B,COS@k+BySill@k, 

5;" = - V, sin @k + vY cos (Dk, 

B: = -B, sin @k + By cos @k, 
(41) 

(42) 

X 
b 

X ij 

Figure 1 .  Quadrilateral cell structure on x-y plane 
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&k and Ayk are the changes in x and y respectively across the kth interface, 

&k = xk - xk+l I AYk = Yk+l - Yk (44) 

(note that k is cyclic, i.e. Ax, = Ax, and Ay, = Ayl), and ASk is the length of the kth interface, 

Ask = d ( G  + Ay:). 

Aij = ~ [ ( X Z  - x l ) b 3  - Y I >  - ( X I  - x 3 ) b 4  - Y ~ ) I ,  

(45) 

The area of the quadrilateral cell i, j is given by 

(46) 

where indices (shown in Figure 1) for x and y denote the corner locations of this cell. 
Note that for Cartesian grids one obtains x 1  = x2, x3  = x4, y2 = y3 and y1 = y4 so that Ax = x l  - 

The procedure to advance Ui"j to U;f1 is as follows. First the density, pressure and normal and 
tangential components of the velocity and magnetic fields are determined by special averaging, 
discussed above, at each interface (equations (16H19), (41) and (42)). Secondly the normal and 
tangential fluxes are found from these quantitie? For ex_ample, :he fly normal to the (i+$)th 
interface (i.e. the interface k = 1 between states Ui+lj = U, and Uij = U,) is calculated from 

~ 4 ,  Ay = y3 - y4 and Aid = +Ay. - 

where is the sign of i k ,  @k is the flux limiter fi.mction'O'" and 

and 

are th_e local and upwind second-order flux corrections respectively. Note that in order to evaluatejJ 
from f given in equation (2), the subscripts x and y must be replaced by n and t respectively. The flux 
tangent to this interface, gi+,/2j, is found similarly. In this case, iij is found from 2 in this equation 
by replacing the subscripts x and y by t and n respectively. Then these fluxes are rotated back to the x- 
y co-ordinate system to get their Cartesian counterparts. This procedure is followed for each interface 
in a counterclockwise sense until the total flux (equation (39)) is obtained and the state is advanced to 
the next time level. 

During the numerical experiments, two different form of limiters are used. The first is Roe's 
compressive Superbee limiter 

+n+1/2 

O(r) = max(0, min(max( 1, r), min(2,2r))) (47) 

and the second is van Leer's less compressive limiter 

O(r) = max(0, min(2r, (1 + r)/2,2)), (48) 

which behaves better at the maxima. 

applied (see References 10 and 11 for details). 
If the interface includes a sonic wave (i.e. A; < 0, A: > 0 and i k  FZ 0), then a sonic fix should be 
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4. NUMERICAL, RESULTS 

4.1. One-dimensional problems 

The scheme described in this paper is applied to Sod’s shock tube problemI2 to check the limit 
where the magnetic field vanishes and the flow is purely-one-dimensional. The initial condition is 
given by pL = 0.1, PR = 0.125, P L  = 1.0, P R  = 0.1 and Y = 0, B = 0 for an ideal gas with y = 1-4. 
The exact solution consists of a shock (ss+) and contact discontinuity (c+) moving to the right and a 
rarefaction wave (rf-) moving to the left. A uniform mesh of 100 points with At/Ax = 0.41 1 and the 
Superbee limiter are used. The plots of density and velocity are shown after 35 time steps (at 
t = 0.144) in Figure 2. 

The results are excellent, since very sharp shock and contact discontinuities are produced and there 
exist no substantial post-shock oscillations. 

As the next test problem, the MHD version of Sod’s problem introduced by Brio and Wu’ is 
chosen. In this problem, after several time steps the initial jump in the tangential magnetic field leads 
to the creation of a slow, left-moving compound wave (a slow shock and an attached rarefaction 
wave). 

The initial condition for this problem is p L  = 1.0, pR = 0.125, P L  = 1.0, P R  = 0.1 and B, = 0, 
B, = 0.75,/(4~), By, = ,/(4n), By, = -,/(4n). Using a uniform grid of 800 points with At/Ax = 0.2 
and considering an adiabatic index y = 2-0, the numerical results at t = 0.1 (400 time steps) for the 
density and tangential magnetic field are shown in Figure 3. In this case, left-moving rarefaction (rf-) 
and compound (cw-) waves and right-moving contact (c+), slow shock (ss+) and rarefaction (rf+) 
waves are created. It must be noted that the limiter was turned off at the compound wave to create a 
pointwise dissipation (the requirement for fixing a non-strictly hyperbolic system of equations which 
was addressed by Heinrich et ~ 1 . ’ ~ ) .  The numerical experience of this author shows that the limiters 
should always be turned off whenever a slowly moving wave is found in the solution domain. This 
pointwise dissipation does not diffuse the shocks but eliminates a significant number of the 
oscillations. The best way to treat slowly moving waves with a Roe-type method is not known and 
this issue must be studied further. To understand why these oscillations are created by a slowly 
moving wave, see References 13 and 14. 

The next test problem includes an initial condition (with a high Mach number) which gives rise to 
an unphysical expansion shock if a sonic fa is not applied. To fix the sonic point (here due to the left- 
moving slow wave), the new sonic fix discussed by A s h ”  is used. The initial condition is the same 

Sod’s Test Problem 

0.8 
-, rf- 

- 
0.0 0.2 0.4 0.6 0.8 1.0 

X 

1 .o 

0.8 

0.6 

0.4 VX 

Sod’s Test Problem 

.-. 

0.2 1 ..- 
0.0 I , I  I I 

0.0 0.2 0.4 0.6 0.8 1.0 
X 

Figure 2. Numerical solutions for Sod’s shock tube problem. The labels rf - , c + and ss + denote left-moving rarefaction and 
right-moving contact and slow shock waves respectively 
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Brio-Wu Problem Brio-Wu Problem 
1 .o 

0.8 rj 
0.4 

0.2 - 
. sst rf+ 

0.0 0.2 0.4 0.6 0.8 1.0 
X 

1 .o 

0.0 

-0.5 By 

-1.0 1 
-1.5 - 

0.0 0.2 0.4 0.6 0.8 1.0 
X 

Figure 3. Numerical solutions of Brio and Wu's first test problem. The results are obtained at t = 0.1 with Ar/Ax = 0.2. The 
labels rf- , cw - , c + ,  ss+ and rf+ denote left-moving rarefaction, compound, right-moving contact, slow shock and 

rarefaction waves respectively 

as in the previous test case except that B, = 0, PR = 1000, y = 5. The solution obtained after 400 
time steps with a Courant number of 0.8 is given in Figure 4, showing the result with no sonic fix 
(left) and the result with the new sonic fix (right). 

In obtaining these results, van Leer's limiter for the non-linear waves and the Superbee limiter for 
the entropy waves are used. Also, full Roe averaging" is used and the limiter is turned off at the left- 
moving slow shock. The numerical experience of this author shows that using full Roe averaging 
eliminates over- and undershoots, while using the less compressive limiter for the non-linear field and 
turning off the limiter at the shock produces fewer Lax-Wendroff-type post-shock oscillations. 

4.2. Two-dimensional problems 

The fist two-dimensional problem is the steady state regular shock reflection problem which has 
been extensively used as a test problem in aerodynamic  calculation^.'^ The computational domain 
used for this problem is a rectangle with a length of four units and a height of one unit. This domain is 
divided into 60 x 20 grids with h = Ay = 0.05. The steady state is reached after 550 time steps. 
The left boundary includes a supersonic inflow at a Mach number of 2.9. The boundary condition on 
this boundary is (p, V,, V,, P)  = (1.0, 2.9, 0.0, l / y )  with y = 1.4. In order to get a 29" shock 
reflection from the lower boundary, the boundary condition must be specified at the upper boundary. 
This can be done by satisfying the R-H conditions with the normal flux jump across the 29" shock 
location and solving for the downstream values. The upper boundary condition is (p,  V,, V,, P)  = 

1.0 

0.8 

0.6 

0.4 

P 

Strong Sonic 

0.2 L ssd 
u 

0.0 0.2 0.4 0.6 0.8 1.0 
X 

High Mach Number 

0.0 o.2 L-A 
0.0 0.2 0.4 0.6 0.8 1.0 

X 

Figure 4. Numerical solutions for high-Mach-number problem Of Brio and Wu: left, result with unphysical expansion shock (no 
sonic fix); right, result with new sonic fix 
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1 

0.5 

0 
0 0.5 1 1.5 2 2.5 3 3.5 4 

Figure 5. Pressure contour plot for density for steady state 29" oblique shock reflection with Mach = 2.9 inflow 

(1.69997, 2.61934, -0.50632, 1.52819). The lower boundary is a reflective boundary and the right 
boundary is an outgoing boundary. In Figure 5 the contour plot of pressure is shown. As seen, the 
shocks are fairly sharp and no numerical instabilities exist at the outgoing boundary. 

The second test problem is a 15" wedge flow. The 15" expansion corner results in the interaction of 
the expansion waves with other waves. The oblique shock produced from a Mach 2 inflow reflects 
from the upper wall and passes through the expansion wave which is reflected first from the upper and 
then from the lower boundary.16 The contour plot of density and the algebraic grid with 96 x 32 cells 
are shown in Figure 6. The shocks are monotonic and sharp, but lower reflection causes the shock to 
diffuse slightly after reflection. This can be improved by using adaptive meshes. For the two- 
dimensional calculations so far the magnetic field is taken as zero. As seen from these results, the 
code works very well in the limit B = 0. 

The last test problem (which includes the magnetic field) is the unsteady flow over a step with a 
Mach 3 uniform flow with y = 1.4.3 The domain is a rectangle with a length of three units and a 
height of one unit. The step is placed at x = 0.6 with a height of 0.2 units. The initial condition 
throughout the grid is (p ,  V,, P )  = (1.4, 3.0, 1.0) with a specific value of B, and all the other 
quantities are set to zero. The upper and lower boundaries are reflective and the right boundary is an 
outgoing boundary. The particular feature of this problem is that the magnetic field is perpendicular 
to the plane of calculation; consequently the magnetic field may be treated as a pseudoscalar and the 
condition that the magnetic field be divergence-free is automatically satisfied. Figure 7 shows the 
density contours on a 60 x 20 grid at t = 2 as a function of the normal magnetic field for B, = 0, 
B, = 251471, B, = 351471, B, = 4014.n. The result with B, = 0 is identical with that obtained by 
solving the Euler equations, which again proves that the limit B = 0 also works out very well in two- 
dimensional problems. This solution includes a Mach reflection directly above the expansion comer 
and a slip line extending to the right from the triple point. As the strength of the magnetic field is 
increased, the triple point moves away from the upper wall, the slip line vanishes, the reflected shocks 
get weaker and the flow becomes more and more uniform with a strong bow shock which moves 
away from the front face of the step. This test problem can easily be modified with a fixed profile of 
B, to study beams through channels. Even though this flow is relatively simple, the results show that 
the method is able to solve MHD problems accurately in two dimensions. 

Min = 0.0 Max = 3.0 Inc = 0.1 

0 0.5 1 I .J 2 2.5 3 

Figure 6. Density contour plot and 96 x 32 algebraic grid for steady state 15" wedge reflection problem 
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B F O  , Min: 0.1 , Max: 8.0, Inc: 0.25 8 ~ 3 5  
1 1 

0.8 0.8 
0.6 0.6 
0.4 0.4 
0.2 0.2 
0 0 

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 

1 1 
0.8 0.8 
0.6 0.6 
0.4 0.4 
0.2 0.2 
0 0 

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 

Figure 7. Density contours and 60 x 20 rectangular grid for unsteady state step reflection problem as a function of normal 
magnetic field 

During all the numerical experiments the average execution time per grid point was found to be 
within 0-OSO.15 s in real time on a personal computer (486, 66 MHz, 16 Mbyte). 

5 .  CONCLUSIONS 

In this paper an explicit, second-order Godunov-type method based on the finite volume approach is 
presented for the solution of one- and two- dimensional problems in ideal magnetohydrodynamics by 
quadrilateral cells for arbitrary geometries. The numerical results show that the method is sufficiently 
robust and can handle eigenvector degeneracies and sonic points very efficiently. The new sonic fix 
and new Roe averaging are proven to work very well with a wide variety of test problems. The results 
presented in this paper are in excellent agreement with those reported earlier and even (often) display 
sharper discontinuities and monotonic shocks. The effect of different fixes of degenerate and sonic 
points and an appropriate method for integrating the source terms in the quadrilateral cells are 
currently being investigated and will be the subject of subsequent publications. 
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